A Brief Introduction on 4WDM (4 Wavelength Division Multiplexing)

With the rapid development of data centers and mobile base station, 100G optical transceivers are playing a more and more important roles in the data center construction and mobile backhaul. In order to meet the increasing needs for cost-effective and low-power 100G optical networks, 4WDM came out, which is a new module and cage/connector system that supports to transmit up to 40km. In this article, we will introduce you something about 4WDM that you may be interested in.

1. What Is 4WDM MSA

4WDM MSA (4 Wavelength Division Multiplexing Multi-Source Agreement) defines 4 x 25 Gbps Local Area Network Wavelength Division Multiplex (LAN- WDM) optical interfaces for 100G optical transceivers for Ethernet applications including 100 GbE. Forward error correction (FEC) is a link requirement in order to ensure reliable system operation. Two transceivers communicate over single mode fibers (SMF) of length from 2 meters to at least 20 or 40 kilometers. The transceiver electrical interface is not specified by this MSA but can have, for example, four lanes in each direction with a nominal signaling rate of 25.78125 Gbps per lane.

Different form factors for the transceivers are possible. The QSFP28 module is expected to be a popular form factor for these applications. Other form factors are possible and are not precluded by this MSA.

2. Introduction on 4WDM MSA Group

The 4WDM MSA Group is an industry consortium dedicated to defining optical specifications and promoting adoption of interoperable 100G (4x25G) optical transceivers for 10 km based on the CWDM4 wavelength grid, and for 20 km and 40 km based on the LAN-WDM wavelength grid, over duplex single-mode fiber (SMF). These extended reaches are important for modern data center interconnects and mobile backhaul applications. The 4WDM MSA Group is responding to previously unmet industry needs for longer reaches, lower costs, and lower power consumption as compared to previously available standards such that they are implementable in small form factors.

Members of the 4WDM MSA include Applied Optoelectronics, Broadcom, Brocade, Ciena, ColorChip, Dell, Finisar, Foxconn Interconnect Technology, Huawei Technology, Inphi, Intel, Juniper Networks, Kaiam, Lumentum, MACOM Technology, NeoPhotonics, Oclaro, Skorpios Technologies, Source Photonics, and Sumitomo Electric Industries.

3. 4WDM vs. CWDM4

4WDM MSA defines CWDM4 and 4WDM with different distances and wavelengths (2km/10km/20km/40km). 2km and 10km use CWDM wavelength. 20km and 40km use LAN WDM wavelength.

With the different size of the CWDM and LAN WDM wavelengths, the wavelength-transmitting TOSA for LAN WDM must be carried with a TEC (Thermo Electric Cooler). As the stable wavelength drifts with temperature, TEC consumes an extra 0.5W of power, so the overall power consumption of optical transceivers with LAN WDM wavelengths will be higher than that of CWDM optical transceivers.

4. 100G QSFP28 4WDM 40KM

100G QSFP28 4WDM 40KM is a 100Gb/s transceiver module designed for optical communication applications compliant to QSFP28 4WDM 40KM MSA standard. The module converts 4 input channels of 25Gb/s electrical data to 4 channels of LAN WDM optical signals and then multiplexes them into a single channel for 100Gb/s optical transmission. Reversely on the receiver side, the module de-multiplexes a 100Gb/s optical input into 4 channels of LAN WDM optical signals and then converts them to 4 output channels of electrical data. Ethernet applications are up to 30km links without FEC and up to 40km links with FEC interconnections.

Main Features:

  • 4 channels full-duplex transceiver modules
  • Supports data rate up to 103.1Gb/s
  • Supports QSFP28 4WDM 40km MSA
  • 4 x 25Gb/s DFB-based LAN-WDM Cooling transmitter
  • 4 channels APD ROSA
  • Internal CDR circuits on both receiver and transmitter channels
  • Low power consumption <4.2W
  • Hot Pluggable QSFP form factor
  • Up to 30km reach for G.652 SMF without FEC
  • Up to 40km reach for G.652 SMF with FEC
  • Duplex LC receptacles
  • Built-in digital diagnostic functions
  • Operating case temperature 0°C to +70°C
  • 3V power supply voltage
  • RoHS 6 compliant(lead free)


With the advantages of cost-effectiveness, low power consumption as well as long transmission distance, we can look forward that 100G QSFP28 4WDM will have a good performance on 100G optical networks. Gigalight recently released the latest 100G QSFP28 4WDM optical transceiver supporting 100GE applications. For more product details, welcome to visit our official website.

About Gigalight:

Gigalight is a design innovator in global optical interconnect field. A series of optical interconnect products include: optical transceivers, passive optical components, active optical cables, GIGAC MTP/MPO cablings, and cloud programmers & checkers, etc. Three applications are mainly covered: Data Center & Cloud Computing, MAN & Broadcast Video, and Mobile Network & 5G Optical Transmission. Gigalight takes advantage of its exclusive design to provide clients with one-stop optical network devices and cost-effective products.


Ethernet vs. Wi-Fi: Which One Is the Better Choice?

Now we are living in a networking world. Using Ethernet or Wi-Fi can help us to get better wireless network experience. However, we often feel confused while choosing between Wi-Fi and Ethernet. Which one shall I choose? What factors shall be taken into consideration before selecting one of them? Both of the two connections have their own advantages and disadvantages. And these pros and cons are based on some different factors, like speed, security, reliability, latency, etc. Here Gigalight is going to discuss all of the factors in detail below.

Firstly, we need to make it clear that the definition of Ethernet and Wi-Fi before comparing them.

What Is Ethernet and What Is Wi-Fi?

Ethernet is a way of connecting computers together in a local area network or LAN. It has been the most widely used method of linking computers together in LANs since the 1990s. Ethernet is created by Xerox, and jointly developed into the one by Xerox, Intel and DEC. It adopts the CSMA/CD access control method and is conformed to IEEE802.3.

Wi-Fi is the technology that allows a PC, laptop, mobile phone, or tablet device to connect at high speed to the internet without the need of physical wired connection. Wi-Fi uses radio signals to transmit information between your Wi-Fi enabled devices, like your mobile phone, and the internet, allowing the device to receive information from the web in the same way that a radio or mobile phone receives sound.

What’s the Difference between Ethernet and Wi-Fi?

When discussing Ethernet vs. Wi-Fi, there are many differences that can be considered which form the deciding factors in choosing one over another. Some users prefer speed, some users prefer reliability, some users consider security, and some users always like the latest technology. Therefore, the following part will introduce the main differences between Ethernet and Wi-Fi that affect people’s choices.

1. Speed

Wi-Fi has become pretty fast over the years with standards such as 802.11ac and 802.11n being able to give us speeds of 866.7 Mb/s and 150 Mb/s, respectively. That is pretty fast and meets most of our needs, especially when it comes to using the internet.

What about the speed of an Ethernet cable? There are standards for Ethernet cables like cat-5, cat-5e, cat-6 cables etc. Theoretically, a wired Ethernet connection can offer up to 10 Gb/s if you have cat-6 cable. However, the most common cat-5e cable supports up to 1 Gb/s. Ethernet is faster, this is undoubtedly true. If you’re using multiple devices, such as a server where all your data is stored or for LAN gaming, you might consider switching to an Ethernet cable.

2. Reliability

Talking about reliability, Wi-Fi is less reliable of the two. Because a number of things can affect a wireless signal, from other wireless devices to physical objects and walls. This interference can cause dropped signals, higher latency and even lower speeds at times. While it doesn’t matter much when all you need to do is stream content over the internet but for any other purposes, You can minimize this by ensuring your router is placed in the optimum position in your home, but it’s unlikely that you will ever achieve the same levels of stable performance that you will get from Ethernet.

3. Security

When comparing Ethernet vs. Wi-Fi, security is another big factor that needs to be considered. The data on an Ethernet network can only be accessed by devices physically attached to the network. These devices, including the laptop at one end and router at the other, need firewalls to protect them, but there’s way the data itself can be intercepted on the network.

With Wi-Fi, the data is in the air. If you’re using an open network (such as in a coffee shop) then all the data you send and receive can be intercepted, including personal information and login details. That is to say, it is easier to hack into a Wi-Fi network than getting a physical access to the physical Ethernet cable.


Of course there are other factors considering when you want to choose Ethernet or Wi-Fi, like latency, interference, and so on. Generally speaking, Ethernet offers the advantages of better speed, lower latency, and more reliable connections. Wi-Fi offers the advantage of convenience and being good enough for most uses. So, you can choose one of them according to your actual use.

About Gigalight:

Gigalight is a design innovator in global optical interconnect field. A series of optical interconnect products include: optical transceivers, passive optical components, active optical cables, GIGAC™ MTP/MPO cablings, cloud programmers & checkers, etc. Three applications are mainly covered: Data Center & Cloud Computing, MAN & Broadcast Video, and Wireless & 5G. Gigalight takes advantage of its exclusive design to provide clients with one-stop optical network devices and cost-effective products.


What Are the Impacts of Temperature on Optical Transceivers?

The working temperature of optical transceivers affects all the parameters of optical transceivers. If the ambient temperature of the optical transceiver changes, the operating current of the optical transceivers will vary with temperature. At the same time, the parameters of the optical transceiver change, which affects the normal transmission of optical transceivers. Today, we mainly talk about the causes of too high or too low temperature on optical transceivers and its impact.

What Is the Normal Temperature of Optical transceivers?

Because the type and brand of the optical transceiver are complicated, the temperature of modules corresponding to different optical transceiver temperature levels are different and the temperature specifications defined by the supplier are different, whether the temperature of optical transceivers is abnormal or not needs to be considered according to these factors. Before we use the optical transceiver, it is best to check the vendor's definition of the temperature profile of the optical transceiver so as to reduce the number of problems caused by abnormal optical transceiver temperature.

Optical transceiver temperature mainly includes three levels: commercial grade, extended grade, industrial grade. The following is a detailed description of these three temperatures:

Temperature Grade

Temperature Range
Commercial temperature range
0 ~ + 70 ℃
Extended temperature range
-20 ~ 85 ℃

Industrial temperature range
-40 ~ 85 ℃

Three Reasons That Affect the Temperature of Optical Transceivers 

1. The Poor Quality and Workmanship

If you use the optical transceivers with poor quality and workmanship, then the phenomenon of abnormal temperature of the optical transceivers is more common. Because the function of such optical transceivers is instable, heat dissipation is also relatively poor. In order to reduce the temperature anomaly and unnecessary discard, we advise to use the optical transceivers with better function, quality and workmanship.

2. The Harsh Application Environment

Optical transceiver operating environment is in the data center, computer room or interchanger. If the optical transceivers are used in other environments, the change of the ambient temperature will inevitably change the temperature of the optical transceiver, thereby affecting its optical power and optical sensitivity. If the application environment of optical transceivers is harsh, then we advise to select the optical transceivers with industrial temperature or extended temperature.

3. The Use of Second-hand Optical Transceivers

The temperature of new optical transceivers is usually at 0-70 ° C and many second-hand optical transceivers are inaccessible. And the second-hand optical transceivers cannot operate normally in high-temperature or low-temperature conditions. Therefore, we advocate the use of new optical transceivers.

What Are the Impacts of High or Low Temperature on Optical transceivers?

If the optical transceiver temperature is too high or too low, it will affect the function of the optical transceiver and make the communication data appear faulty. The optical transceivers will alarm if its temperature isn’t in the normal range. If the optical transceivers are in a bad situation, interchangers will send data continuously. The optical transceivers will not send / receive data from the beginning until it is recovered to normal operation.

1. The Impact of Too High Temperature on Optical Transceivers:

If the operating temperature of optical transceivers is too high, the optical power of optical transceivers will become larger and the receiving signal will be faulty, and even the optical transceiver will be burned. As a result, the optical transceivers cannot work normally. In this case, DDM function should be added. You can select temperature control system for real-time monitoring and compensation to ensure that the optical transceiver extinction ratio and luminous power stable, to ensure the normal operation of the optical communication system.

2. The Impact of Too Low Temperature on Optical Transceivers:

Generally speaking, as long as optical transceivers are not exposed to the harsh environment below 0℃, the temperature will not be too low. It is better not to use the optical transceiver in the condition of too low temperature, as this may cause the function of the optical transceiver to be unstable.

How about the Temperature of Gigalight’s Optical Transceivers?

As one of the most top-rated optical transceiver vendors in China, Gigalight complies with the temperature grade standard that the industry requires, and will meet the customer demand for temperature. In addition, all optical transceivers will undergo a high and low temperature burn-in test prior to shipping to test the temperature to ensure the quality of the products.


What Is CFP and CFP MSA?

100G optical module is an important part of the high-speed optical transmission network. Some people say that the optical module has the status of a vice commander in the entire communication system. The rapid development of optical fiber network, people in the communication industry are obvious to al. 100G optical module is regarded as the mainstay of the 5G network, the market has to tell all of us with the truth that the optical module has changed the original market structure.

Speaking of 100G optical module standards and types, the market mainstream models are mainly CFP / CFP2 / CFP4 and QSFP28. As an early appeared optical module, CFP is now gradually replaced by QSFP28. But the basic principle of the optical module has not changed, and we still can learn it to understand the 100G optical module. Today we will talk about what CFP is and the 100G CFP multi-source agreement (MSA).

What Is CFP Optical Transceiver?

Designed primarily for the 100G market, the CFP optical transceiver is specifically sized for long range interfaces and single-mode fiber applications. It is 120mm long and 86mm wide. It is the same length as a 10G XENPAK optical transceiver but twice as wide. At the same time this optical transceiver has good thermal performance, making it in the process of using small power consumption.

Gigalight can provide several kinds of mainstream CFP optical transceivers: CFP 100GBASE-SR10, CFP 100GBASE-LR4, CFP2 100GBASE-SR10, CFP2 100GBASE-LR4, and 100GBASE-SR4 CFP4. Besides, it will release the latest 100G CFP2 ER4/100G CFP ER4 in January, 2018. These optical transceivers can achieve different transmission distances by connecting with different types of optical fibers.

Module Connector Transmission Distance
CFP2 100GBASE-LR4 Dual LC 10KM

The Origin and Application of 100G CFP Optical Module MSA

CFP MSA is the acronym for 100G Form factor Pluggable Multi-Source Agremment. In March 2009, the multi-source agreement was announced for the CFP module by Finisar, Opnext and Sumitomo to define high-speed Ethernet for 40G and 100G applications and support the next generation. In June 2010, CFP MSA ushers in a new member, AVGO, and released a multi-source agreement for a new version (Rev 1.4).

The CFP MSA introduces the block diagram of the CFP module. The DMUX and MUX in the optical part perform the optical demultiplexing and multiplexing. The WDM (wavelength division multiplexing) technology multiplexes the optical signals of multiple wavelengths onto a single-mode optical fiber for transmission. The module can work at ITU WDM wavelength. The module adopts the single fiber connection mode, which can save 2 × (N-1) optical fibers. In practical applications, the transmission distance of the single-mode optical fibers can reach more than 10km. In the schematic, N represents the number of optical channel, M represents the number of circuit channels. Generally, M and N are not equal. The electrical interface rate of the module is 10 Gbit / s. To implement 100 Gbps rate transmission, 10 electrical interfaces are required to support this. The number of electrical interfaces is 10 for the 100GBASE-LR4 and 100GBASE-ER4, and four for the 40GBASE-FR.

100G CFP Optical Module Hardware Definition

The CFP module has up to 148 pins, distributed at the bottom and top of the module's electrical interface. The host computer can read the module control and status information through the electrical signal interface, which contains 6 control pins, 5 hardware alarm pins (including RX_LOS) and 8 MDIO management interface pins. Optical interface part may have SC, LC, and MPO connector form.

After accessing to the host, CFP optical modules can do the orderly timing switch according to the monitoring status. The timing diagram below is for the module in each steady-state and transient state signal associated with the flag switch.

CFP module operating temperature is not specified: 0 ℃ to 70 ℃. The module manufacturers need to test the performance of these modules in the two temperature conditions and have been to ensure that modules in the whole temperature range can reach the target requirements. The corresponding host also needs to provide the necessary cooling system to ensure that the module operates in this temperature range.

CFP MSA also defines the module size, weight, plug-in strength and so on, as well as the mainframe connected to the module of the various mechanical and electrical structures are detailed design. If you have any question or suggestion, welcome to visit our official website: Gigalight.


The Increasement of 100G Will Drive the Development of 400G

The widespread deployment of 100G Ethernet in data centers and networks is driving the demand for 400G solutions and providing a source of funding for 400G device developments. Those suppliers who have successfully developed competing 100G optical modules and components are expanding 100G while developing lower-cost 100G solutions and introducing 25G, 50G, 200G, 400G and 600G products.

The first 100G Ethernet solution was launched in 2010. Since then, 100G shipments have been slow to grow due to the costly optical module and demand constraints. By 2016, the introduction of 100G QSFP28  will significantly reduce the cost of 100G ports and the migration of the super-large data center to the cloud service has brought huge demand.

As a result, 2017 has been proved to be a "Hockey-stick Effect" year of 100G Ethernet and optical module suppliers are struggling to meet market demand. At this stage, the focus of optical modules and device suppliers is to increase 100G capacity and reduce costs to "cash in" from this wave of demand. The ways to reduce costs include innovative module packaging, silicon photonics, smaller form factor modules such as SFP-DD, and fewer channels / wavelengths.

The first 400G optical module for data centers and enterprises is CFP8 form factor and is being commercialized. The next generation will use QSFP-DD or OSFP. The 100G optical transceivers using DP-QPSK coherent receivers have been widely used in data center interconnection, MAN and Toll networks. The enhanced DSP can now achieve 200G with 16QAM modulation, while the next generation can support 400G and 600G with 64QAM modulation. These developments are critical to meeting the bandwidth needs of the data center.

Currently, nearly 30 suppliers offer QSFP28 modules and active optical cable for 100G data centers and enterprise applications. Many suppliers have also introduced SFP28 modules that support 25G Ethernet to server. Some vendors offer 100G CFP/CFP2/CFP4 and CXP modules. The largest shipments of QSFP28 optical modules are QSFP28 PSM4 and QSFP28 CWDM4 for very large data centers and other applications. The first 200G optical module introduced by manufacturers is QSFP56 and PAM4 coded, or QSFP-DD form factor and two 100G ports.

Data Center interconnection, MAN and long haul systems use DSPs integrated into line card modules or pluggable CFP-DCO modules. Most leading telecom system manufacturers have their own DSP designs. Several companies use DSPs integrated on the line card and pluggable CFP2-ACO modules that contain only analog and optical components. This is a key innovation area for vendors developing next-generation 400 / 600G DSP designs, 200G CFP2-DCO modules and 400G modules. OIF is working on a 400-120-km 400ZR interface standard and Ciena licenses three 400-G-coherent DSP chips to three optical module companies (Lumentum, NeoPhotonics and Oclaro).

Coherent transceivers DSP and Gearbox components, PAM4 PHY and CDR components, optical driver / receiver arrays, and packet optical transport platform components are the key to building these optical modules and line cards. Currently, the latest generation of devices uses 16nm CMOS technology, the next generation of DSP is expected to use 7nm technology. The PAM4 PHY and 50G CDRs enable dual wavelength 100G and four wavelength 200G solutions. Next-generation components will support single-wavelength 100G.

The demand for 100G in the data center and other application markets is very strong. As the cost of modules drops and the production capacity gradually increases to meet the demand, the 100G optical module market in 2018 will be highly competitive. At present, the first solution of 200G and 400G is already available. The industry is currently working to reduce 100G costs by developing higher density 400G and 800G and 1.6Tbit / s solutions. All methods are using advanced coding and modulation methods, especially PAM4 for data centers and enterprises, as well as 16 / 64QAM for Data Center interconnection, MAN and Toll networks. These developments require substantial investment by suppliers, which may lead to further consolidation in the industry.


Analysis on 100G Optical Transceiver in 5G Network

A few years later, 5G will begin to be formally commercial. Does it need to use the optical transceiver? How about its conditions of demand compared with 4G? In fact, 4G have uses the countless optical transceiver, 5G will be more. By the current 5G planning point of view, the rate may reach 10-100 times the 4G network. At this rate, the base station must adopt the optical transceiver to achieve the service function, so the demand of the 5G optical transceiver will far exceed that of the 4G optical transceiver.

According to statistics, the core components of 4G base-stations and 4G transmission equipment are 6G and 10G optical transceivers. Once 4G constructions not only led the advance in the wireless field, but also promoted the development of ancillary industries such as antenna, radio frequency and power supply, the industry is also a new growth driver.

In the optical transceiver, 100G optical transceiver is one of the high frequency words. Even in the sub-industry closely related to the 5G theme investment, the 100G optical transceiver has become a new landmark theme market. Therefore, the post will have a deep analysis on what is 100G optical transceiver.

A Brief Introduction on 100G Optical Transceiver

1. Firstly, we need to know that the 100G "G" refers to the optical signal transmission rate of units, rather than the 5G "G" (Generation, 5th generation mobile communications).

2. Optical transceiver: Optical device is to achieve high-speed conversion between optical signals and an optical device, the optical receiver, optical transmitter, laser, detector and other functional modules.

3. According to the encapsulation type (CFP / XFP / SFP / QSFP, etc.), the transmission rate (155Mbps ~ 200Gbps), optical link (CWDM / DWDM / PSM), mode / Hot swap), optical transceiver has a wide range of categories. If considering the operating temperature range, the number of self-diagnostic functions and performance classification elements, optical transceivers has more categories.

4. The basic structure of an optical transceiver includes a laser (TOSA) + driving circuit, a detector (ROSA) + receiving circuit, a multiplexer (MUX), a demultiplexer (DEMUX), an interface, an auxiliary circuit and a housing.

5. Driven by technological upgrading and cost reduction, the optical transceiver continues to be "high-speed, miniaturized and integrated." 100G optical transceivers using 25G laser chip technology, according to the different form factor methods, 100G optical transceivers have three categories, which are CFP / CFP2 / CFP4, CXP and QSFP28. QSFP28 is a new generation of 100G optical transceiver form factor, and has now become the mainstream optical transceiver form factor in 100G optical transceiver market.

6. 100G optical transceivers have different models and standards. Generally speaking, the transmission rate of optical signals is much higher than that of low-rate 10G and 25G products. Now they have become the star products in large-scale data centers and telecom markets. The following table is the specific circumstances of some common 100G optical transceiver standard:

Connector and Fiber
Cabling Reach
24f MPO, pinned parallel MMF, 10-fiber Tx, 10-fiber Rx 850 nm
100 meters on OM3150 meters on OM4
12f MPO, pinned parallel MMF, 4-fiber Tx, 4-fiber Rx 850 nm
100 meters on OM4
LC receptacles duplex (2) SMF, 1310 nm, 4λx25G WDM
10 kilometers on SMF
12f MPO, pinned parallel MMF, 4-fiber Tx, 4-fiber Rx 850 nm
40 kilometers on SMF
100G PSM4
12f MPO, pinned parallel SMF, 4-fiber Tx, 4-fiber Rx 1310 nm
500 meters on SMF
100G CWDM4
LC receptacles duplex (2) SMF, 1271–1331 nm, 4λx25G CWDM
2 kilometers on SMF
100G SWDM4
SWDM Alliance(preproduction)
LC, receptacles duplex (2) MMF, 850–950 nm, 4λx25G SWDM
100G CLR4
100G CLR4 Alliance
LC receptacles duplex (2) SMF, 1271–1331 nm, 4λx25G CWDM
2 kilometers on SMF


The advent of the 5G era will bring new opportunities for the optical communications industry. The entire industry such as optical fiber, optical transceivers and optical access network systems will benefit from the 5G construction. The world's major optical transceiver manufacturers are now taking this opportunity to launch new 100G optical transceivers to capture the 5G market. Gigalight, as a veteran optical transceiver manufacturer with professional technology, advanced R & D capability and stable manufacturing capability, not only has many popular 100G optical transceiver products, like 100G QSFP28 CWDM4, 100G QSFP28 PSM4, CFP4 100G SR4, and etc. but also will release more new 100G optical transceivers in the first quarter of this year. More information about 100G optical transceivers, please visit the official website. 


100G CFP/CFP2/CFP4 Optical Transceivers: Do You Know?

Because the size of the CFP optical transceiver is too large to meet the high-density requirements of Data Center, the CFP-MSA board defined two new CFP series optical transceivers: CFP2 optical transceiver and CFP4 optical transceiver. Therefore, there are three types of optical transceivers in the 100G CFP series based on different sizes of the form factors. In this article, we are going to talk about CFP / CFP2 / CFP4 in detail.

An Overview of CFP / CFP2 / CFP4

CFP optical transceiver is largest, CFP2 optical transceiver is one half of the CFP, and CFP4 optical transceiver is one quarter of the CFP. The size of these three modules is shown as below. CFP / CFP2 / CFP4 cannot be used interchangeably, but they can be used simultaneously in the same system.

CFP optical transceiver supports transmission on a single-mode and multi-mode fiber at a variety of rates, protocols, and link lengths, including all the physical media dependent (PMD) interfaces included in the IEEE 802.3ba standard. CFP optical transceiver is based on the Small Form Factor Pluggable Optical transceiver (SFP) interface and is larger in size to support 100 Gbps data transmission. CFP optical transceiver can support a single 100G signal, OTU4, one or more 40G signals, OTU3 or STM-256 / OC-768. There are mainly three kinds of 100G CFP optical transceivers: CFP 100GBASE-SR10, CFP 100GBASE-LR4 and CFP 100GBASE-ER4.


100G CFP2 optical transceivers are commonly used as 100G Ethernet interconnects and deliver higher transmission efficiencies than CFP optical transceivers. The smaller size also makes them suitable for higher density cabling. CFP2 100GBASE-SR10, CFP2 100GBASE-LR4 and CFP 2 100GBASE-ER4 are three mostly-used CFP2 optical transceivers in the current market.


Compared with CFP / CFP2 optical transceiver, 100G CFP4 optical transceiver has the same rate but the transmission efficiency has greatly improved. Besides, the power consumption is reduced and the cost is lower than CFP2. CFP4 optical transceiver has irreplaceable advantages. We will discuss it in the second part.


The Advantages of CFP4 Optical Transceiver

1. Higher transmission efficiency: The early 100G CFP optical transceiver, through 10*10G channel, to 100G transmission rate, and now 100G CFP4 optical transceiver through 4*25G channel, 100G transmission, so the transmission efficiency is higher and more stable.

2. Smaller size: CFP4 optical transceiver is one-fourth of the CFP, and is the smallest optical transceiver in the CFP series optical transceiver.

3. Module integration is higher: CFP2 integration is 2 times of CFP, CFP4 integration is four times of CFP.

4. Lower power consumption and cost: CFP4 optical transceiver transmission efficiency has been improved significantly, but the power consumption is decreased and the system cost is lower than CFP2.

In Conclusion:

By learning the above information about 100G CFP / CFP2 / CFP4 optical transceiver, you may have some further understanding about the optical transceiver series. Gigalight not only has variety kinds of 10G/40G/100G/200G optical transceivers, but also provides customers with an online e-commerce platform - inFiberone to meet their needs. More professional tutorials and solutions about optical transceivers and other optical components, you can visit its official website.


5G Network Brings New Opportunity to Optical Communication

Since Ovum released its latest 5G subscriber forecast in December 2016, two major changes have taken place in the 5G market. First and foremost, in March of this year, 3GPP announced the acceleration of the development of some 5G standards to make it possible to standardize on commercial 5G deployments by 2019, one year ahead of the previous deployment schedule. In addition, with the acceleration of the 5G standard set-up, T-Mobile US, one of the major carriers, announced for the first time a nationwide 5G network deployment and the United States will be one of the largest in the world.

At present, 5G is in the crucial stage of the formation of technical standards. Major countries and operators in the world have started the 5G test in succession and successively issued strategic plans to carry out industrial layout and seize strategic high ground. China is also actively promoting the 5G technology research and industrialization, 5G technology research and development testing, international standardization support continue to make new progress. Recently, more than three major operators 5G infrastructure, total spending within seven years will reach 180 billion U.S. dollars heavy news came out, the 5G topic to an unprecedented peak.

As we all know, the future of 5G depends on small base stations. When the coverage of base stations is getting smaller and smaller, the number of base stations will increase exponentially. Taking the example of 3.5GHz, the number of base stations of 3.5GHz is more than the number of base stations of 800MHz and 1.8GHz Doubles. If it is planned more than 6GHz, the number of base stations will be more. If it is planned to 26GHz above, it does not know it will reach how many times. Therefore, a substantial increase in the number of base stations is an inevitable result, and the interconnection between base stations requires a lot of fiber. It is reported that at present, the number of base stations in China has reached more than 5 million, while the future development of 5G, conservative forecasts will reach 10 million or more, if the high-band, or even more.

Obviously, optical communication and 5G have met by chance. Accordingly, what is the impact of 5G on optical communications? The opportunities that 5G brings to optical communication are mainly including three parts: optical fibers, optical transceivers and optical network.

1. First, optical fiber is the first beneficiary. 5G band is high and the number of base stations may be 2-3 times. If following the full coverage requirements, according to Fiber Broadband Association estimates, 5G fiber usage will be 16 times more than 4G. Consider China's 4G base station density is very high, the urban area only a few hundred meters spacing, it is estimated that the amount of 5G fiber is 4G 2-3 times.

2. Second, optical transceiver module is the second beneficiary. Assuming that the 5G base station is 2-3 times as much as 4G, considering the medium / backhaul module, it is expected to bring tens of millions of 25GHz high-speed optical module usage. 5G flat architecture to the traditional huge capacity and cost pressures, which requires a large number of optical transceivers to support.

3. Moreover, high-speed optical access network systems and optical devices are the third beneficiaries. The 5G architecture enables several decades of backhaul / midamble / preamble capacity up to tens of hundreds of Gbps levels and requires the introduction of 25G / 50G based CWDM or WDM for tunable lasers, tunable filters and CWDM / WDM devices High cost performance requirements; for TWDM PON systems, the demand for eCPRI and even edge ROADM systems is likely to increase significantly.

To sum up, we are currently at the pinnacle of opportunities and challenges in the 5G era. As the leading optical communications industry and optical component manufacturer in the 5G era, Gigalight has been closely following the market and moving ahead of 2016 in preparation for the beginning of 5G optical device product lines. At present, Gigalight owns a complete line of professional optical modules and other products. In particular, a large number of high-speed new products are launched in last year: 100G QSFP28 CWDM4, 100G QSFP28 PSM4, and 200G QSFP DD SR8. For


Difference between 100G QSFP28 and CFP/CFP2/CFP4 Optical Modules

Before the advent of the 100G QSFP28 optical module (an optical module that can be used to support 100G transmission), the development direction of the 100G network is 10G > 40G >100G. After the QSFP28 optical modules appeared, the development mode of 10G > 25G > 100G or 10G > 25G > 50G >100G began to become widespread in the industry. And now there are already some data centers that have began to adopt this method to achieve 10G to 100G upgrade.

The cost and power consumption of data center is an important driver of the optical communication market. Reviewing the development of 100G optical modules, the form factors (CFP, CFP2, and CFP4) and the standard development and improvement also mainly focus on low cost and low power consumption. 100G QSFP28 optical module meets these requirements. The post will compare 100G QSFP28 optical module and other 100G optical modules in terms of port density, power consumption, and cost respectively.

1. Port Density

The first generation of 100G optical modules was a very large CFP optical module, and then CFP2 and CFP4 optical modules were launched, among which CFP4 optical module was the latest generation of 100G optical modules and had a width of only 1/4 of the CFP optical modules. However, the form factor of 100G QSFP28 optical module is smaller than the CFP4 optical module, which means the 100G QSFP28 optical module has a higher port density on the switch.

2. Power Consumption

The power consumption of 100G QSFP28 optical module is usually lower than 3.5W while that of other 100G optical modules is usually between 6W and 24W. From this, 100G QSFP28 optical modules have much lower power consumption than other 100G optical modules.

3. Cost

Now the data center is mainly 10G network architecture, in which the interconnection solution is mainly 10GBASE-SR optical module and duplex LC multimode fiber jumper. If the existing 10G network architecture can be directly upgraded to 40 / 100G networks, it will save a lot of time and cost.

Although 100G QSFP28 optical modules have many advantages, it is only one of many solutions for 100G network. For data centers and server rooms, suit is best. Therefore, other 100G optical modules also have a place in the 100G network. Gigalight thinks that 100G QSFP28 optical module series, like 100G QSFP28 SR4, 100G QSFP28 LR4, 100G QSFP28 CWDM4 and 100G QSFP28 PSM4, have brought a new solution for 100G applications that will promote the faster development of 100G.


Development and Applications of 100G Ethernet

The fundamental requirement to speed Ethernet interface upgrading to 100 Gbit / s is bandwidth increasing. One of the most important factors is the bandwidth-intensive applications such as video. In addition, the telecom application of Ethernet also causes the increase of convergence bandwidth demand. Every level of network, from access to Ethernet users to the backbone, is approaching its current speed limit.

The development of 100G Ethernet standards and technologies is driven by demand but ahead of schedule. According to the plan of the IEEE802.3ba Task Force (TF), it is expected that standards will be finalized by mid-2010, but the real business time depends on more factors.

Bandwidth Demand for 100G Ethernet

First of all, under the premise of standard maturity, it also needs real network demand driven and is in the interest of operators. The main factors of bandwidth demands include:

1. The increasing business is based on IP, as it is now described by ALL IP;
2. Almost all the IP packets are sent from the source to sink, the whole process is encapsulated in the Ethernet frame;
3. The technology used in Ethernet over TDM /Ethernet has matured and traditional voice compatibility is no longer a problem;
4. Ethernet encapsulation is simpler and cheaper than SONET / SDH encapsulation.

 These decisions to upgrade the Ethernet interface to 100 Gbit / s are both objective and urgent. Network communications can be achieved on 100G Ethernet networks with "accelerated network communications and improved application performance", enabling fast access to data stored in data Center of the various applications, implementation of bandwidth management, cache, compression, path optimization and protocol acceleration and other functions.

Applications of 100G Ethernet

For the application at the convergence layer, the downlink port is switching to 10 Gbit / s and the uplink can only use 10 Gbit / s port link aggregation. If there is a 100G Ethernet interface, you can improve the management, distribution and efficiency of data flow. For the data center, with the increase of 10 Gbit / s interface, there is also the demand for upstream and inter-connected high-speed interfaces. For the efficient transmission of backbone networks, we also expect the 100G high- Interface and transmission maturity.

The P802.3ba standard has fully considered the maturity of related standards and technologies of the electrical interface when adopting the 10.312 5 Gbit / s inter-chip interconnection transmission channel. The multimode parallel optical interface can support the OM3 optical fiber to meet the requirements of 100 m Even over longer distances; single-mode 40GBASE-LR4 is economical with coarse wavelength division multiplexing (CWDM); 100GBASE-LR4 uses DWDM with 25.781 25 Gbit / s per wavelength and 1 295-1 310 nm wavelength, Fully use the original fiber, integrated technology and cost, the standard selection of technologies are practical and feasible, to help promote the 100G interface in the local and metropolitan area within the commercial.

For the whole network of use, serial 100GE transmission standard and technology before maturity can use the reverse multiplexing technology. 100GE services of 10 × 10GE or 4 × 25GE interfaces are adapted to OTU2 / OTU3 through ODU2 / ODU3 and transmitted through multiple wavelengths in 10G / 40G optical networks. It is possible to eliminate the need to redesign and modify existing 10G / 40G DWDM optical networks. The transmission pattern is still ODB / DRZ / EPR - Differential Quadrature Phase Shift Keying Control (eRZ-DQPSK). This model can be used 10G / 40G existing mature optoelectronic devices, and the entire system performance and 10G / 40G system consistent. This scheme can realize the smooth network upgrade, meet the operator's cost expectation, and the device is ripe [10].

Therefore, the current cost and demand point of view, 100 Gigabit Ethernet commercial first in the metropolitan area network is more feasible solution, because in the MAN, a lot of data on the road at any time, without a variety of compensation Device transmission system will greatly simplify the network design, 100 Gigabit Ethernet just to meet this demand, while high bandwidth to meet the metropolitan area network 40% annual traffic growth. In a word, the development demand of 100 Gigabit Ethernet has already been obvious, and the cost advantage will also be strengthened constantly. However, the transmission of 100 Gigabit Ethernet transmissions needs constant technical improvement from modulation mode to operation management and maintenance.

In addition to this technology upgrade, in addition to 100 Gigabit Ethernet, other protocols, including Fiber Channel, Infiniband and SONET, will also appear in 40/100 Gbit / s networks. In the late 1990s, Ethernet ports Equipment prices have dropped more than twice as fast as competitive ATM and Fiber Distributed Data Interface (FDDI). However, 40 Gbit / s and faster networks share many of the same FPGAs, SERDES, and encoding technologies, making it difficult for any device to achieve cost advantage by mass production. 100G Ethernet may not be as dominant as it used to be. 


In general, 100 Gigabit Ethernet technology is a very viable with high-profile technology that everyone is enthusiastic to participate in, but the standards and technologies themselves have yet to mature, and commercial pilots will be launched by the end of 2009 but mature commercial is expected to be beyond 2012.

In addition to the technical and commercial challenges, the opportunities presented are enormous, starting with the opportunity for research institutes to discover and innovate; bringing new, high-return markets to component and module suppliers (but also requires high investment); For system suppliers is a comeback and take this opportunity to lead the market.

As we all know, QSFP28 optical transceiver is considered as the mainstream modules for 100G Ethernet. But how to select QSFP28 optical transceivers for 100G Ethernet? Gigalight is able to provide various kinds of QSFP28 products, including QSFP28 DAC, QSFP28 AOC, and QSFP28 optical transceivers with different interfaces such as 100G SR4 / LR4 / PSM4 / CWDM4 optical transceivers. For more details, please visit its official website: http://www.gigalight.com/.